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Abstract
Der Groundskeeper Algorithmus liefert eine Methode, um, ausgehend von einem zu-
sammenhängenden, ungerichteten, endlichen Graphen, einen Spannbaum zu erzeu-
gen. Ziel dieser Arbeit ist es, diesen Algorithmus zu beschreiben und anschließend zu
beweisen, dass die dadurch konstruierten Spannbäume gleichverteilt auf der Menge
aller Spannbäume des Graphen sind. Dabei werden grundlegende Erkenntnisse aus
der Theorie der Markov-Ketten gezeigt und verwendet. Im zweiten Teil der Arbeit
wird die Implementierung des Groundskeeper Algorithmus in Python präsentiert so-
wie Ergebnisse statistischer Auswertungen von dadurch generierten Bäumen.
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1 Einleitung

Ein Graph, also eine Menge von Knoten, welche mit Kanten verbunden sind, kann für
viele Systeme mit denen wir täglich Kontakt haben, stehen. Die Menge der Knoten
könnte beispielsweise Haushalte symbolisieren und die Kanten Leitungen, welche die
Häuser mit Wasser oder Gas versorgen. Ein Graph könnte aber auch für Computer-
systeme stehen, die durch Kabel miteinander kommunizieren können. In den meisten
Fällen haben diese beiden Szenarien gemeinsam, dass ein Anschluss oder eine Verbin-
dung zum Netzwerk der Wasserleitungen bzw. des Internetanbieters ausreichend ist.
Zwei Wasseranschlüsse sowie zwei Internetanschlüsse sind zum einen meistens nicht
notwendig und zum anderen eine Frage der Kosten. Wie verbindet man die Haushalte
einer Stadt miteinander, wenn die Verbindungen der vorhandenen Straßenarchitek-
tur folgen? Des Weiteren ist zu berücksichtigen, dass nicht jede Verbindung gleich
teuer ist. Beim Legen einer Leitung ist beispielsweise die Verlegungstiefe im Erdreich
nicht immer gleich. Als Antwort auf diese Frage dient der minimale Spannbaum des
Graphen, der für das System steht.

Spannbäume finden darüber hinaus Anwendung in Gebieten wie der Clusteranalyse
und der Echt-Zeit Gesichtserkennung. Die allgemeinen Eigenschaften von Spannbäu-
men sind für die verschiedensten Branchen von Bedeutung, weswegen sie auch in der
Mathematik vielstudierte Objekte sind.

Ausgehend von einem bestimmten Graphen, welche Eigenschaften, wie Radius oder
Durchmesser, kann man sich von einem Spannbaum erwarten? Um diese Frage zu be-
antworten ist es von Vorteil, eine Methode zu haben, um einen zufälligen Spannbaum
eines Graphen zu erstellen. Diese Methode liefert der Groundskeeper Algorithmus.
Ziel dieser Arbeit ist es, diesen Algorithmus zu beschreiben und anschließend zu
beweisen, dass die dadurch konstruierten Spannbäume gleichverteilt auf der Menge
aller Spannbäume des Graphen sind. Diese Arbeit orientiert sich am Artikel The
random walk construction of uniform spanning trees and uniform labelled trees von
D. J. Aldous.
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2 Konstruktion und Beweis

2.1 Konstruktion

Sei im folgenden G = (V,E) ein endlicher zusammenhängender ungerichteter Graph
mit Knotenmenge V und Kantenmenge E ⊆ V ×V . Mit rv bezeichnen wir den Grad,
die Anzahl der Nachbarn, eines Knotens v aus V . Für zwei Knoten v, w ∈ V schreiben
wir v ∼ w falls (v, w) ∈ E, v, w Nachbarn sind. Mit (Xj; j ≥ 0) bezeichnen wir einen
Randomwalk auf dem Graphen G mit einem zufällig ausgewählten Startknoten X0.
Für einen zufälligen Startknoten v gilt dann

Xj =

{
v if j = 0

w für w ∈ {w ∈ V : w ∼ Xj−1} ifj > 0

wobei jedes w ∈ {w ∈ V : w ∼ Xj−1} gleich wahrscheinlich ist. Das heißt, dass für
alle Knoten in V gilt, dass die Wahrscheinlichkeit, dass ein Knoten v aus V der erste
Knoten X0 = v ist, 1/|V | ist. Für einen beliebigen Schritt Xj = v mit j ≥ 0 des
Randomwalks und eine Kante (v, w) aus E gilt, dass die Wahrscheinlichkeit, dass der
nächste Schritt Xj+1 = w ist, gleich 1/rv ist. Der Randomwalk terminiert, wenn alle
Knoten von V erschlossen wurden. Da G endlich ist, terminiert ein Randomwalk mit
Wahrscheinlichkeit 1.

Auf Grundlage dieses Randomwalks kostruieren wir einen Spannbaum des Graphen
G und gehen dabei folgendermaßen vor. Wir betrachten die verwendeten Kanten eines
Randomwalks, also die Menge

{(u, v) ∈ E | ∃ i ≥ 0 : Xi = u ∧ Xi+1 = v}

und entfernen die Kanten, durch die kein neuer Knoten durch den Randomwalk
erschlossen wurde. Für eine genauere Beschreibung definieren wir den Zeitpunkt, an
welchem ein Knoten das erste Mal entdeckt wurde. Wir bezeichnen diesen Zeitpunkt
für jeden Knoten v als Tv, der folgendermaßen definiert ist:

Tv = min{j ≥ 0 : Xj = v}
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2 Konstruktion und Beweis

Da der Randomwalk mit Wahrscheinlichkeit 1 terminiert, sind die Tv wohldefiniert.
Wir können nun einen Teilgraph von G definieren, mit der Kantenmenge

E ′ := {(XTv−1, XTv)|v ∈ V \X0} (2.1)
Wir definieren den Teilgraph T = (V,E ′).

2.2 Spannbaum

Um zu zeigen, dass T ein Spannbaum ist, zeigen wir zunächst, dass T zusammen-
hängend ist.

Wir nummerieren dazu die Knoten in V in der Reihenfolge ihrer Entdeckung im
Randomwalk und zeigen, dass der Graph, der durch die Knoten VN = {v1, . . . , vN}
und die Kantenmenge EN = {(XTv−1, XTv)|v ∈ VN \ X0}, N ≤ |V |, definiert ist,
zusammenhängend ist. Wir führen einen Induktionsbeweis über N .

Induktionsanfang: der Graph V1 = ({v1}, ∅) ist als trivialer Graph zusammenhän-
gend.

Induktionsvorraussetzung:
der Graph GN = ({v1, . . . , vN}, {(XTv−1, XTv)|v ∈ VN \X0}) mit N < |V | ist zusam-
menhängend.

Induktionsschritt: Der Knoten von dem aus vN+1 entdeckt wurde, ist der Knoten
XTvN+1

−1. Da dieser Knoten zuvor entdeckt worden sein muss, ist XTvN+1
−1 in VN . Da

nach der Induktionsvorraussetzung VN zusammenhängend ist, existiert ein Pfad zwi-
schen v1 und vN . Somit können wir diesen Pfad durch die Kante (XTvN+1

−1, XTvN+1
) ∈

EN+1 erweitern und haben einen Pfad zwischen v1 und vN+1 gefunden. Somit ist also
v1 mit jedem anderen Knoten in VN+1 verbunden, wodurch GN+1 zusammenhängend
ist.

Wir haben also bewiesen, dass für N ≤ |V | der Graph GN zusammenhängend ist.
Dadurch ist insbesondere der Graph G = G|V | = zusammenhängend, was wir zeigen
wollten.

Um zu zeigen, dass G ein Spannbaum ist, bleibt noch zu zeigen , dass es in G keine
Kreise gibt. Dazu zeigen wir zunächst folgende Lemmata:
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2 Konstruktion und Beweis

Lemma 2.2.1. Ein Graph G = (V,E) mit |E| < |V | hat mindestens ein Blatt, also
einen Knoten mit nur einem Nachbarn.

Beweis. Wir nehmen an, ein Graph G = (V,E) mit |E| < |V | habe kein Blatt. Dann
sind alle Knoten von G mindestens vom Grad 2. Summiert man die Grade der Knoten
von V auf, zählt man alle Kanten doppelt, somit ergibt sich:

2|E| =
∑
v∈V

rv ≥ 2|V |.

Und dadurch

|E| ≥ |V |

was ein Widerspruch zur Annahme |E| < |V | ist. Also hat jeder Graph G = (V,E)
mit |E| < |V | mindestens ein Blatt.

Lemma 2.2.2. Ein zusammenhängender Graph G mit n Knoten hat mindestens
n− 1 Kanten.

Beweis. Für n ≤ 3 lassen sich alle möglichen Graphen leicht aufzeichnen, um die
Aussage zu verifizieren.

v1

v1

v2

v2

v1

v3

v1

v2

v3

Abbildung 2.1: Alle zusammenhängenden Graphen mit 3 oder weniger Knoten

Seil also nun n ≥ 4. Um einen Widerspruch zu erzeugen, betrachten wir den Gra-
phen G mit minimaler Knotenanzahl n, dessen Anzahl der Kanten nicht größer als
n− 2 ist.

Wir entfernen einen Knoten vom Grad 1, welcher aufgrund von Lemma 2.2.1 exi-
sitiert, und dessen zugehörige Kante. Dadurch erhalten wir einen neuen zusammen-
hängenden Graphen G′ mit Knotenanzahl n − 1 und weniger als n − 2 Kanten.
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2 Konstruktion und Beweis

Dieser Graph ist zusammenhängend und hat mindestens 2 Kanten weniger als Kno-
ten, wodurch der ursprüngliche Graph G nicht der Graph mit dieser Eigenschaft und
minimaler Knotenanzahl gewesen sein kann. Somit kann dieser Graph G nicht exis-
tieren und ein zusammenhängender Graph G mit n Knoten hat mindestens n − 1
Kanten.

Satz 2.2.3. Der durch die Kanten in 2.1 definierte Graph ist kreisfrei.

Beweis. Wir nehmen an es gäbe in dem durch 2.1 definierten Graphen G = (V,E ′)
einen Kreis. Dann können wir eine Kante e aus diesem Kreis entfernen, sodass der
G′ = (V,E ′ \ e) immer noch zusammenhängend ist. Allerdings gilt |E ′| = |V | − 1
und somit |E ′ \ e| = |V | − 2. Wir haben aber in Lemma 2.2.2 gezeigt, dass ein
zusammenhängender Graph mit Knotenzahl |V | mindestens |V | − 1 Kanten haben
muss. Das ist ein Widerspruch und somit ist G kreisfrei.

Damit haben wir gezeigt das der durch 2.1 definierte Graph T ein Spannbaum des
originalen Graph G ist.

Jeder Spannbaum von G ist durch diese Konstruktion möglich. Einem bestimmten
Spannbaum t könnten mehrere verschiedene Randomwalks zu Grunde liegen. Einer
ist aber gerade jener, der durch die Tiefensuche auf dem Baum t bestimmt wird.

2.3 Gleichverteilung

Wir zeigen im Folgenden, dass die durch einen Randomwalk definierten Bäume gleich-
verteilt sind.

Dazu brauchen wir den Begriff eines stationären stochastischen Prozesses.

Definition 2.3.1 (stochastischer Prozess). [6] Sei (Ω,F ,P) ein Wahrscheinlichkeits-
raum und (Z,Z) Messraum und T eine Indexmenge. Dann heißt eine Familie X =
(Xt)t∈T messbarer Abbildungen

Xt : Ω → Z, t ∈ T

stochastischer Prozess (mit Zustandsraum Z).
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2 Konstruktion und Beweis

Für uns ist ein Randomwalk (Xj; j ≥ 0) ein stochastischer Prozess mit dem Raum
Ω aller möglichen Randomwalks auf G. Der Zustandsraum Z ist die Menge V der
Knoten von G und T die Indexmenge N0.

Definition 2.3.2 (stationärer stochastischer Prozess). [5] Ein stochastischer Prozess
(Xt)t∈T mit der Indexmenge T heißt stationär, wenn die Verteilung von (Xs+t)t∈T
nicht von der Verschiebung s ∈ T abhängt, also wenn gilt

PX((Xs+t)t∈T ) = PX((Xt)t∈T )

für alle s ∈ T

Definition 2.3.3 (Markov-Kette). [8] Ein stochastischer Prozess (Xt)t∈N0 der nur
Werte aus einem höchstens abzählbaren Zustandsraum Z = {z1, . . . , zn} annimmt,
wird Markov-Kette genannt, wenn gilt:

P(xt+1 = zt+1|xt = zt, xt−1 = zt−1, . . . , x0 = j0)

= P(xt+1 = zt+1|xt = zt)

alle t ∈ N und alle (zt+1, . . . , z0) ∈ Zt+2. Diese Eigenschaft nennt man auch Ge-
dächtnislosigkeit. Die Größen

pz,v(t) = P(xt+1 = v|xt = z)

werden Übergangswahrscheinlichkeiten genannt. Sind diese konstant, so spricht man
von stationären Übergangswahrscheinlichkeiten und einer homogenen Markov-Kette.
Die Matrix P (t) mit Einträgen pz,v(t) mit z, v ∈ V ist dann die Übergangsmatrix der
Markov-Kette. Da wir nur mit homogenen Markov-Ketten zu tun haben, werden wir
P für die Übergangsmatrix schreiben.

Wir bezeichnen im folgenden die Anzahl der Spannbäume von G mit N(G) und die
Menge aller gewurzelten Spannbäume von G mit S. Um zu zeigen, dass die Verteilung
der Spannbäume (ohne Wurzel) uniform ist, also

P(T = t) =
1

N(G)
=

|V |
|S|

,

mit einem Spannbaum t, betrachten wir zunächst die gewurzelten Spannbäume, die
durch einen Randomwalk (Xj; j ≥ 0) definiert sind aber die Konstruktion wie in
2.1 zu einem späteren Zeitpunkt m startet. Bezeichne mit Tm

v den Index des ersten
Besuches des Knotens v ab dem Index m, also

Tm
v = min{j ≥ m : Xj = v}.
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2 Konstruktion und Beweis

Dann ist

Sm = (V, {(XTm
v −1, (XTm

v )|v ∈ V \Xm}) ∈ S

der Spannbaum mit Wurzel Xm, der durch den Randomwalk (Xm, Xm+1, Xm+2, . . . )
mit m ≥ 0 definiert wird. Dadurch erhalten wir eine Folge von gewurzelten Spann-
bäumen (Sm)m≥0. Im nächsten Schritt betrachten wir einen Randomwalk (Xj;−∞ <
j < ∞) auf G, der mit den ganzen Zahlen indexiert ist. Der Randomwalk (Xj;−∞ <
j < ∞) induziert dann eine ebenfalls über die ganzen Zahlen indexierte Folge von
gewurzelten Spannbäumen (Sm;−∞ < m < ∞). Wir werden uns eine solche Folge
von gewurzelten Spannbäumen in Rückwärtszeit

(Sm, Sm−1, Sm−2, . . . ), (2.2)

welche bei einem Index m ∈ Z beginnt, genauer ansehen.

Definition 2.3.4 (stationäre Verteilung). [6] Sei (Xt)t∈T eine Markov-Kette mit
Indexmenge T , Zustandsraum Z und Übergangsmatrix P . Eine Verteilung π heißt
stationär, falls für alle v ∈ Z gilt:

∑
z∈Z

π(z)pz,v = π(v) (2.3)

Fasst man π als Zeilenvektor auf, so kann man 2.3 auch in der Form

πP = π

beschreiben.

Definition 2.3.5 (erreichbar, kommunizierend). [6] Sei (Xt)t∈N0 eine Markov-Kette,
mit Zustandsraum Z, Übergangsmatrix P und zwei Zuständen i, j ∈ Z. Der Zustand
j heißt von i aus erreichbar, falls es einen Pfad von i nach j gibt. Das heißt,

∃ n ≥ 1 : PX(Xt+n = j|Xt = i) > 0 t ∈ N0.

Ist i auch von j aus erreichbar, so heißen i und j kommunizierend.

Definition 2.3.6 (irreduzibel). [6] Ist C ⊂ Z eine Teilmenge des Zustandsraums
Z einer Markov-Kette und kommunizieren alle i, j ∈ C miteinander, so heißt C
irreduzibel. Ist Z irreduzibel, so heißt die Markov-Kette irreduzibel.

7



2 Konstruktion und Beweis

Lemma 2.3.1. Sei P die Übergangsmatrix einer irreduziblen Markov-Kette und sei
A = [P − I, 1] die Matrix P − I mit einer zusätzlichen letzten Spalte mit nur 1 als
Einträgen. Dann gilt, rang(A) = n wobei n die Anzahl der Zustände der Markov-Kette
ist.

Beweis. Da die Zeilen jeder Übergangsmatrix P aufsummiert 1 ergeben, gilt P1 = 1
und somit hat die Gleichung Ax = 0 die Lösung (1, 0)T . Sollte rang(A) = n nicht
gelten, so müsste es eine weitere nicht triviale Lösung (y, α)T geben, die orthogo-
nal zu (1, 0)T ist. Also muss gelten

∑
i yi = 0, wobei aber y 6= 0, da sonst auch

α = 0 gelten würde, wodurch die weitere Lösung trivial wäre. Wegen A(y, α)T = 0
gilt Py + α1 = y. Jeder Eintrag von y ist also eine Konvexkombination der Ein-
träge von y plus α. Da die Markov-Kette irreduzibel ist, gibt es einen Zustand k,
dessen zugehöriger Eintrag im Vektor y maximal ist und welcher auf dem Übergangs-
graphen der Markov-Kette neben einem Zustand l liegt, dessen zugehöriger Eintrag
im Vektor y geringer ist. Dieses Paar k, l muss existieren, da sonst alle Werte in
y gleich groß wären, wodurch sofort y = 0 folgen würde. Somit ist pkl 6= 0 und da-
durch yk >

∑
i pkiyi. Da laut Annahme yk =

∑
i pkiyi+α gelten muss, ist also α > 0.

Wählen wir hingegen k als Zustand mit minimalen Wert in y, so erhalten wir α < 0
und somit einen Widerspruch.

Somit kann es keine zweite nicht triviale Lösung von Ax = 0 geben, wodurch
rang(A) = n gilt. [2]

Korollar 2.3.1.1. dim({π : πP = π}) ≤ 1.

Beweis. Für ein π mit
∑

i πi = 1 und π ist Linkseigenvektor von P muss gelten,
πA = (0, 1). Aus πA = (ATπT )T und rang(A) = rang(AT ) folgt dann
dim({xA|x ∈ Rn}) = n, womit die Abbildung x 7→ xA injektiv ist. Somit hat
πA = (0, 1) höchstens eine Lösung und durch skalieren dieser Lösung erhalten wir
den Raum {λπ : λ ∈ R, πA = (0, 1)} = {π : πP = π}, womit die Aussage gezeigt ist.
[4]

Definition 2.3.7. [2] Sei p(t) die Verteilung der Zustände einer Markov-Kette nach
t Schritten, p(t)i bezeichnet die relative Häufigkeit des Auftretens der Zustands i.
Somit gilt klarerweise

∑
i p(t)i für jedes t. Bezeichne mit a(t) die längerfristige Ver-

teilung der Zustände.
a(t) =

1

t
(p(0) + · · ·+ p(t− 1))
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2 Konstruktion und Beweis

Satz 2.3.2 (Fundamentalsatz für Markov-Ketten). Für eine irreduzible Markov-
Kette existiert eine eindeutige Verteilung π die πP = πerfüllt und für längerfristige
Verteilung a(t) gilt, limt→∞ a(t) = π

Beweis.

b(t) = a(t)P − a(t)

=
1

t
(p(1) + · · ·+ p(t))− 1

t
(p(0) + · · ·+ p(t− 1))

=
1

t
(p(t)− p(0))

Also gilt |b(t)| ≤ 2
t

und somit kovergiert b(t) = a(t)P − a(t) gegen 0. Dadurch
konvergiert a(t) gegen eine Verteilung π für die πP = π gilt. Diese Verteilung ist
durch 2.3.1.1 eindeutig.

Wir werden zeigen, dass die Folge in 2.2 eine Markov-Kette ist und dass (Sm;−∞ <
m < ∞) ein stationärer stochastischer Prozess ist , wodurch wir über die stationäre
Verteilung dieser Markov-Kette, die Verteilung aller gewurzelten Spannbäume erhal-
ten.

Lemma 2.3.3. Ein gewurzelter Spannbaum Si aus der Folge 2.2 mit i > m ist
vollständig durch (Si+1, Xi) bestimmt.

Beweis. Dem gewurzelten Spannbaum Si+1 liegt der Randomwalk (Xj; j ≥ i + 1)
zugrunde. Beginnen wir nun den Randomwalk bei Xi, anstelle von Xi+1, müssen wir
eine neue Kante zu unserem Baum hinzufügen und zwar die Kante (Xi, Xi+1). Falls
diese Kante bereits in Si+1 vorhanden war, gilt Si = Si+1, ansonsten ist die Kante,
die hinzugefügt wurde als Xi in Si+1 entdeckt wurde in Si nicht mehr vorhanden, da
ja Xi der erste Knoten war. Der Rest des Baumes bleibt hingegen unverändert.[3]

Der ausschlaggebende Punkt ist, dass wir die im zweiten Fall überflüssige Kante
eindeutig durch Sl+1 bestimmen können. Diese Kante ist nämlich die Letzte, vom
eindeutigen Weg von Xi+1 nach Xi, im Baum Si+1, was folgende Grafik illustrieren
soll.
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2 Konstruktion und Beweis

v1 v2

v3 v4

v5

Xi+1

Xi

v1 v2

v3 v4

v5

Xi+1

Xi

Abbildung 2.2: Beispiel zweier Spannbäume mit Wurzel in rot. Links der Spannbaum
Si+1 und Rechts Si. Die Kante (v3, v1) wurde als letzte Kante vom
Weg von Xi+1 nach Xi entfernt.

Wir haben somit gezeigt, dass die Folge aus 2.2 gedächtnislos ist. Fassen wir Ω
bzw. Z aus 2.3.1 als Menge aller Folgen von gewurzelten Spannbäumen bzw. S (die
Menge aller gewurzelter Spannbäume) auf, dann ist eine Familie Sm = (Si)i≤m mit
m ∈ Z ein stochastischer Prozess. Somit ist jede Folge wie in 2.2 eine Markov-Kette.

Ein Randomwalk ist ebenfalls eine Markov-Kette, da die Übergangswahrschein-
lichkeiten nur vom aktuellen Knoten abhängen. Da der Graph G zusammenhängend
ist, ist die Markov-Kette die einen Randomwalk beschreibt irreduzibel und somit
existiert durch 2.3.2 eine eindeutige stationäre Verteilung.

Lemma 2.3.4. Die stationäre Verteilung π eines Randomwalks auf einem zusam-
menhängenden, endlichen, ungerichteten Graphen G = (V,E) ist proportional zu dem
Grad der Knoten. Genauer:

π(v) =
rv
2|E|

(2.4)

Beweis. Dazu müssen wir zeigen, dass der Vektor π ein Linkseigenvektor zum Ei-
genwert 1 der Übergangsmatrix einer Markov-Kette (Xj;m ≤ j < ∞) mit m ∈ Z ist.
Sei P die Übergangsmatrix, mit Einträgen pv,w = P(Xj+1 = w|Xj = v) für v, w ∈ V ,
dann soll also gelten

πTP = πT

und somit ∑
v

π(v)pv,w = π(w)

für alle w ∈ V . Durch Einsetzen erhalten wir für festes w∑
v

π(v)pv,w =
∑
v

rv
2|E|

pv,w =
∑
v∼w

rv
2|E|

1

rv
=

rw
2|E|

= π(w)

und somit die Behauptung.

10



2 Konstruktion und Beweis

Somit ist in einem Randomwalk (Xj;−∞ < j < ∞) das Auftreten eines be-
stimmten Knotens nicht von der Zeit abhängig und dadurch zu jedem Zeitpunkt
gleich wahrscheinlich. Ein Randomwalk indexiert mit den ganzen Zahlen, ist also ein
stationärer stochastischer Prozess. Da ein gewurzelter Spannbaum Sm, m ∈ Z mit
Wahrscheinlichkeit 1 von einer endlichen Folge von Knoten (Xm, Xm+1, . . . Xm+n)
abhängt, ist ein gewurzelter Spannbaum zu jedem Zeitpunkt gleich wahrscheinlich
und (Sm;−∞ < m < ∞) ein stationärer stochastischer Prozess.

Um die stationäre Verteilung der Markov-Kette von gewurzelten Spannbäumen in
Rückwärtszeit wie in 2.2 zu ermitteln, wollen wir die Übergangsmatrix und deswegen
die Übergangswahrscheinlichkeiten

P(Sm = u|Sm+1 = t)

betrachten, also die Wahrscheinlichkeiten, dass ein gewurzelter Spannbaum u auftritt
bedingt durch den Nachfolger t. Dazu sind die Übergangswahrscheinlichkeiten eines
Randomwalks (Xj;−∞ < j < ∞) in Rückwärtszeit von Bedeutung

Lemma 2.3.5. Für einen Randomwalk (Xj;−∞ < j < ∞), beliebiges m ∈ Z,
v, w ∈ V mit v ∼ w gilt

P(Xm−1 = w|Xm = v) =
1

rv

Beweis. Für den Beweis nutzen wir, dass für beliebiges v ∈ V und einen beliebigen
Schritt m ∈ Z im Randomwalk (Xj;−∞ < j < ∞) gilt,

P(Xm = v) = π(v),

mit π, der stationären Verteilung des Randomwalks aus 2.3.4. Dann erhalten wir
nach Definition der bedingten Wahrscheinlichkeit für w ∼ v

P(Xm−1 = w|Xm = v) =
P(Xm−1 = w,Xm = v)

P(Xm = v)

=
π(w)P(Xm = v|Xm−1 = w)

π(v)

=

rw
2|E|

1
rw

rv
2|E|

=
1

rv

und somit die Aussage.
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2 Konstruktion und Beweis

Bezeichne für einen Baum t, den Grad seiner Wurzel mit r(t). Bedingt durch einen
gewurzelten Spannbaum Si = u mit i ≤ m der Folge 2.2 von gewurzelten Spannbäu-
men, betrachten wir jetzt die Wahrscheinlichkeit für einen gewurzelten Spannbaum
Si−1. Dem Baum u liegt der Randomwalk (Xj; j ≥ i) zugrunde. Für den Vorgänger-
knoten Xi−1 kommen dadurch r(u) Knoten in Frage, wobei durch 2.3.5 jeder Knoten
davon gleich wahrscheinlich ist. Somit gibt es auch r(u) Bäume aus S die für Si−1

in Frage kommen und die alle gleich wahrscheinlich sind. Bezeichne die Menge dieser
Bäume mit D(u). Dann gilt für festes u ∈ S

P(Si−1 = t|Si = u) =

{
1

r(u)
falls t ∈ D(u)

0 sonst
(2.5)

Gehen wir in 2.5 allerdings von festem Si−1 = t ∈ S aus, so gibt es in der Markov-
Kette 2.2 der gewurzelten Spannbäume, r(t) Nachfolger Si von t, für die die Gleichung
gilt. Die Menge dieser Bäume bezeichnen wir mit C(t)

Mit 2.5 können wir die Übergangsmatrix der Markov-Kette (Sm, Sm−1, Sm−2) für
i ≤ m aufstellen:

P =


P(Si−1 = t1|Si = t1) P(Si−1 = t2|Si = t1) P(Si−1 = t3|Si = t1) . . .

P(Si−1 = t1|Si = t2) P(Si−1 = t2|Si = t2)
. . .

P(Si−1 = t1|Si = t3)
. . .

...


Diese Matrix hat aufgrund von

∑
t∈S

r(t)P(Sm = t′|Sm+1 = t) =
∑

t∈C(t′)

r(t)P(Sm = t′|Sm+1 = t)

=
∑

t∈C(t′)

r(t)
1

r(t)

= r(t′)

den Linkseigenvektor (r(t))t∈S zum Eingenwert 1.[1]

Um die stationäre Wahrscheinlichkeit der Markov-Kette der gewurzelten Spann-
bäume zu erhalten, müssen wir diesen Vektor noch normieren.

12



2 Konstruktion und Beweis

∑
t∈S

r(t) = N(G)
∑
v∈V

rv = 2N(G)|E|

Somit ist der Vektor
1

2N(G)|E|
(r(t)t∈S)

die gesuchte und wegen Satz 2.3.2 eindeutige stationäre Verteilung π der Markov-
Kette.

Da (Sm;−∞ < m < ∞) ein stationärer Prozess ist, ist die Verteilung π genau der
Vektor der Wahrscheinlichkeiten

(P(Sm = t))t∈S

wodurch dann
P(Sm = t) =

r(t)

2|E||N(G)|
für einen gewurzelten Spannbaum t gilt.

Somit hängt die Wahrscheinlichkeit des Auftretens eines Spannbaumes nur vom
Grad seiner Wurzel hab.

Kehren wir nun wieder zu dem ursprünglichen Spannbaum T , der durch den Ran-
domwalk (Xj; j ≥ 0) definiert wird, zurück.

Ist die Verteilung des Startknotens X0 die der stationären Verteilung 2.4 des Ran-
domwalks über die ganzen Zahlen, so können wir auch die stationäre Wahrschein-
lichkeit des Spannbaums anwenden. So ist dann

P(T = t) =
r(t)

2|E||N(G)|

für einen gewurzelten Baum t. Wenn wir diese Wahrscheinlichkeit mit der Bedin-
gung eines bestimmten Startknotens X0 = w versehen, wobei w ∈ V beliebig ist,
dann ist jeder Spannbaum mit w als Wurzel gleich wahrscheinlich, da diese Bäume
alle den selben Grad der Wurzel haben. Da wir jeden Spannbaum von G mit jeder
Wurzel w auffassen können, sind die entstehenden Bäume ohne Wurzel gleichverteilt.
Ist nun X0 bzw. w uniform, so ist immer noch jeder Spannbaum gleich wahrscheinlich.

■

13



3 Implementierung

Im folgenden Abschnitt, werden Skripte präsentiert, welche verwendet wurden, um
die Bäume zu untersuchen, die durch die Implementierung des Algorithmus mit einem
bestimmten Graphen entstanden sind. Die Skripten wurden verwendet, um Spann-
bäume zu generieren und anschließend für Eigenschaften wie Durchmesser, Anzahl
der Knoten vom Grad k, Statistiken zu erstellen.

3.1 Generieren von Bäumen

Für die Implementierung in Python bietet sich die Library networkx an. Sie umfasst
grundlegende Funktionen, die im Umgang mit Graphen essentiell sind. Zunächst
werden wir Funktionen betrachten, die verwendet wurden, um Spannbäume zu gene-
rieren. Des Weiteren werden wir darstellen, wie diese Funktionen im Zusammenhang
mit dem in 2.1 beschriebenen Algorithmus stehen.
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3 Implementierung

3.1.1 Erstellen eines Randomwalks

Folgender Pythoncode wurde benutzt, um einen Randomwalk auf dem Graphen zu
erstellen, der alle Knoten abdeckt.

1
2 def random_walk ( graph ) :
3 random_node = random . c h o i c e ( l i s t ( graph ) )
4
5 s t e p s = 10∗∗6
6
7 randomwalk = [ random_node ]
8
9 while len ( l i s t ( dict . f romkeys ( randomwalk ) ) ) \

10 != len ( l i s t ( graph ) ) :
11
12 i = 0
13 for i in range ( s t e p s ) :
14
15 n e i g h b o r _ l i s t = l i s t (\
16 graph . ne i ghbor s (\
17 random_node ) )
18
19 random_node = random . c h o i c e ( n e i g h b o r _ l i s t )
20 randomwalk . append ( random_node )
21
22 return ( randomwalk )

Abbildung 3.1: Funktion zum Erstellen eines Randomwalks auf einem Graphen. Der
Randomwalk deckt alle Knoten des Graphen ab.

Nach der Übergabe des Graphen an die Funktion wird in Zeile 3 ein Startknoten
ausgewählt, der unserem X0 entspricht. Anschließend definieren wir die Anzahl der
Schritte, die auf dem Graphen gegangen werden sollen, bevor kontrolliert wird, ob
schon alle Knoten besucht wurden. Dies dient dazu, die Laufzeit der Funktion, gegen-
über dem Kontrollieren nach jeder Iteration, drastisch zu minimieren. Die Abfolge
der Knoten wird als Liste gespeichert. Um den Randomwalk laufen zu lassen, wird in
der for-Schleife ein zufälliger Nachbarknoten des aktuellen Knotens ausgewählt und
zur Liste hinzugefügt. Die äußere while-Schleife kontrolliert alle 600 000 Schritte, ob
schon alle Knoten besucht wurden.
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3 Implementierung

3.1.2 Erstellen eines Spannbaumes

Der folgende Code wurde verwendet, um auf Grundlage eines zuvor erstellten Ran-
domwalks mit der Funktion aus 3.1.1, einen Spannbaum zu erstellen.

1
2 def c r e a t e _t r e e ( randomwalk ) :
3 T = nx . Graph ( )
4
5 T_geordnete_knoten = l i s t ( dict . f romkeys ( randomwalk ) )
6
7 for node in T_geordnete_knoten [ 1 : ] :
8
9 i = randomwalk . index ( node )

10 T. add_edge ( randomwalk [ i −1] , node )
11
12 return (T)

Abbildung 3.2: Funktion zum Erstellen eines Spannbaumes durch einen Randomwalk

Nach Übergabe eines Randomwalks, der alle Knoten eines Graphen abdeckt, und
der Initierung eines Baumes, erstellen wir in Zeile 5 eine Liste der Knoten in der
Reihenfolge ihrer Entdeckung. Anschließend werden in der for-Schleife, die über die
Knoten (bis auf den Startknoten) in Reihenfolge ihrer Entdeckung iteriert, die Kanten
nach und nach hinzugefügt. Die Variable i entspricht hierbei genau

Tv = min{j ≥ 0 : Xj = v}.

da index() den Zeitpunkt der Entdeckung zurückgibt. Somit können wir die Kante

(XTv−1, XTv) = (randomwalk[i-1],node)

zur Kantenmenge von T hinzufügen.

3.2 Statistiken anhand eines Beispiels

Als Beispielgraph wurde folgender Graph mit 9835 Knoten und 21856 Kanten ge-
wählt. Der Radius dieses Graphen beträgt 25 und der Durchmesser 50.
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3 Implementierung

Abbildung 3.3: Beispielgraph in networkx geplottet. Zentrum des Graphen in schwarz
in der Mitte und der Pfad des Durchmessers in rot

Ein Spannbaum, der mit den obigen Skripten erzeugt wurde, könnte dann folgen-
dermaßen aussehen.

Abbildung 3.4: zufälliger Spannbaum des Beispielgraphen mit Kanten in rot einge-
zeichnet

Um die Grade der Knoten, den Durchmesser und den Radius der Bäume sowie die
Höhe der Bäume mit Wurzel als Startknoten auszurechnen, wurde folgendes Skript
verwendet.

17



3 Implementierung

1 #!/ usr / b in /env python3
2
3 import networkx as nx
4 import numpy as np
5 from networkx . r e adwr i t e . graphml import write_graphml_lxml
6 import sy s
7
8 i f len ( sy s . argv ) > 1 :
9 n = int ( sy s . argv [ 1 ] )

10
11 else :
12 print ( ” Keine ␣Anzahl ␣ neuer ␣Bäume␣ gegeben . . . ” )
13
14 n = int ( input ( ”n␣=␣” ) )
15
16 f = open ( ” h e i g h t s . tx t ” , ” r+” )
17
18 a l r e ady_ca l cu l a t ed = len ( f . read ( ) . s p l i t ( ” , ” ) ) − 1
19
20 for i in range ( a l r e ady_ca l cu l a t ed + 1 ,\
21 a l r e ady_ca l cu l a t ed+n+1):
22
23 t r e e = nx . read_graphml ( ” Trees / t r e e ”+str ( i ) )
24
25 f . w r i t e ( ” , ”+str ( nx . e c c e n t r i c i t y ( t r e e , l i s t ( t r e e ) [ 0 ] ) ) )
26
27 f . f l u s h ( )
28
29 f . c l o s e ( )

Abbildung 3.5: Skript zum Berechnen von Höhen von gewurzelten Bäumen

Dieses Commandlineskript dient dazu, die Höhe bezüglich des Startknotens einer
eingelesenen Anzahl an Bäumen zu berechnen. Die Höhen wurden in einer .txt Datei
”heights.txt”gespeichert und neuberechnete Höhen wurden in der Datei angehängt.
Da die zuvor in 3.1 erstellte Bäume in dem Ordner ”Treesäls .graphml File abge-
speichert wurden, werden aus diesem Ordner die Bäume eingelesen und anschließend
ihre Höhe bestimmt.

Die Skripte um Durchmesser bzw. Radius eines Baumes zu bestimmen sind ident,
mit der Ausnahme, dass in Zeile 24 nicht die Funktion nx.eccentricity() sondern

18



3 Implementierung

die Funktionen nx.diameter bzw. nx.radius verwendet wurden und die ausgerech-
neten Höhen in einem anderen Textfile gespeichert wurden. Die Anzahl der Knoten
mit bestimmten Grad wurde ebenso berechnet, mit dem Unterschied, dass die ver-
schiedenen Anzahlen als Listen in einem Textfile gespeichert wurden.

Es folgen Plots, welche die Eigenschaften Höhe, Radius, Durchmesser und Grad
der Knoten von generierten Spannbäumen beschreiben.

Abbildung 3.6: Höhe von 20 000 durch Randomwalks erzeugten Spannbäumen

19



3 Implementierung

Abbildung 3.7: Durchschnittliche Anzahl der Knoten nach Grad von 20 000 Spann-
bäumen

Abbildung 3.8: Standardabweichung der Anzahl der Knoten nach Grad von 20 000
Spannbäumen

20



3 Implementierung

Abbildung 3.9: Durchmesser von 4 000 durch Randomwalks erzeugten Spannbäumen
des Beispielgraphen.

Abbildung 3.10: Radius von 4 000 durch Randomwalks erzeugten Spannbäumen
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